Однородные координаты и матрицы преобразований
Поскольку трёхмерная матрица поворота не несёт информации о поступательном перемещении и используемом масштабе, вектор координат р= (рx, рy, рz)T в трёхмерном пространстве дополняют четвёртой координатой (или компонентой) так, что он принимает вид: = (wрx, wрy, wрz, w)T.
Тогда вектор выражен в однородных координатах.Описание точек трёхмерного пространства однородными координатами позволяет ввести в рассмотрение матричные преобразования, содержащие одновременно поворот, параллельный перенос, изменение масштаба и преобразование перспективы.
В общем случае изображение N-мерного вектора размерностью N+1 называется представлением в однородных координатах. При таком представлении преобразование N-мерного вектора производится в (N+1)-мерном пространстве, а физический N-мерный вектор получается делением однородных координат на (N+1)-ю компоненту .
Так, вектор р = (рx, рy, рz)T положения в трёхмерном пространстве в однородных координатах представляется расширенным вектором (wрx, wрy, wрz, w)T.
Физические координаты связанны с однородными следующим образом:
рx = , рy= , рz= ,
где w – четвёртая компонента вектора однородных координат (масштабирующий множитель).
Если w = 1, то однородные координаты вектора положения совпадают с его физическими координатами.
Однородная матрица преобразования представляет собой матрицу размерностью 4´4, которая преобразует вектор, выраженный в однородных координатах, из одной системы отсчёта в другую.
Однородная матрица преобразования может быть разбита на четыре подматрицы:
Т = =.
(4-1)Верхняя левая подматриа размерностью 3?3 представляет собой матрицу поворота; верхняя правая подматрица размерностью 3?1 представляет собой вектор положения начала координат повернутой системы отсчета относительно абсолютной; Нижняя левая подматрица размерностью 1?3 задает преобразование перспективы; четвертый диагональный элемент является глобальным масштабирующим множителем. Однородная матрица преобразования позволяет выявить геометрическую связь между связанной системой отсчёта OUVW и абсолютной системой OXYZ.
Если вектор р трехмерного пространства выражен в однородных координатах, т.е. , то, используя понятие матрицы преобразования можно сформировать однородную матрицу преобразования Тпов, задающую преобразование поворота и имеющую размерность 4?4. Однородная матрица поворота получается соответствующим расширением обычной матрицы поворота, имеющей размерность 3?3. Так, однородное представление для матриц (2-12) и (2-13) имеет следующий вид:
, ,
. (4-2)
Эти матрицы размерностью 4?4 называются однородными матрицами элементарных поворотов. Однородная матрица преобразования переводит вектор, заданый однородными координатами в системе отсчета OUVW, в абсолютную систему координат OXYZ, т.е. при :
(4-3)
и . (4-4)