<<
>>

§3 Марковские моменты.

3.1. Определение. Пусть - случайная величина называется марковским моментом, если для .

Конечный марковский момент называется моментом остановки (т. е. ).

Пример. Пусть непрерывен справа со значениями в тогда момент первого достижения уровня : , является марковским моментом.

Теорема 10. 1) Пусть - марковский момент, тогда 2) Пусть - марковский момент, тогда .

Доказательство. 1) Так как - марковский момент, то . Отсюда при получаем .

2) Так как , то из пункта 1) получаем утверждение.

Доказательство закончено.

Теорема 11. Если и - марковские моменты, то: 1) - марковский момент, 2) - марковский момент.

Докажите самостоятельно.

3.2. Возникает естественный вопрос: при каких условиях случайная величина является марковским моментом?

Теорема 12. Случайная величина - марковский момент, если для .

Доказательство. Так как - случайная величина, то . Докажем, что . Из определения случайной величины следует, что Пересечем все эти множества, имеем , для . Поэтому в силу условий теоремы имеем .Доказательство закончено.

Теорема 13. Если есть два марковских момента, то и - марковские моменты.

Докажите самостоятельно.

3.3. Определение. Пусть — марковские моменты (м. м.), причём Р - п. н.. Множества называются, соответственно, открытым справа, открытым слева, открытым справа и слева, за­мкнутым стохастическими интервалами и обозначаются, соответственно, через

Через обозначим множество и назовём его графиком марковского момента .

Задача. Докажите, что .

3.4. Определение. Случайное множество А называется тонким, если оно имеет вид , где - последовательность моментов остановки. Если, кроме того, последовательность такая, что при , то такую последовательность назовём исчерпывающей множество A.

Теорема 14. Тонкое множество А и все его сечения не более чем счётны, кроме того, существует исчерпывающая последовательность моментов остановки.

3.5. Определение. Случайный процесс называется остановленным если .

Определение. Пусть последовательность марковских моментов такая, что , причём Р -п. н. для и пусть Р - п. н.. Такую последовательность назовём локализующей (). Если же , то последовательность назовём локализующей.

Определение. Случайный процесс называется локальным мартингалом , если существует локализующая последовательность марковских моментов такая, что для Р - п. н. .

Аналогичным образом определяются локальные субмартингал и супермартингал.

Теорема 15. Пусть - локальный мартингал относительно меры Р.

Тогда - супермартингал (относительно меры Р).

Доказательство. Так как Р — п.н. для , где - локализующая последовательность, то в силу леммы Фату . Доказательство закончено.

3.6. Займемся теперь классификацией марковских моментов.

3.6.1. Определение. Марковский момент называется предсказуемым, если существует последовательность марковских моментов такая, что: а) Р - п. н., б) Р - п. н., при этом последовательность называют предвещающей марковский момент .

Пример. Пусть момент остановки, а . Ясно, что момент остановки, более того предсказуемый момент остановки, так как предвещает последовательность , где

Определение.

Марковский момент называют достижимым, если существует предсказуемая последовательность марковских моментов таких, что Р - п. н., т. е.

3.6.2. Определение. Марковский момент называется недостижимым (вполне или тотально недостижимым) или опциональным, если для каждого предсказуемого момента остановки Р - п. н. .

Задача. Докажите, что если марковский момент одновременно достижим и тотально не достижим, то Р - п. н..

Теорема 16. Марковский момент - опционален тогда и только тогда, когда существует последовательность моментов остановки такая, что: а) Р - п. н. для , б) Р - п. н..

Докажите самостоятельно.

Очевидно следующее утверждение.

Теорема 17. Пусть — опциональный марковский момент. Тогда для любой предсказуемой последовательности марковских моментов

Задача. Докажите, что момент времени в который происходит первый скачок пуассоновского процесса является опциональным марковским моментом.

Теорема 18. Пусть где , и стохастические интервал вида , где - опциональные марковские моменты, порождают алгебру .

Доказательство. Сначала заметим, что - это предсказуемый момент остановки равный нулю на и бесконечности на . Значит . Очевидно, что . Заметим, что предсказуемым м. о., поэтому , следовательно .

Рассмотрим интервал , где - предсказуемый м.о. Нам надо показать, что этот интервал принадлежит алгебре порождённой выше рассмотренными интервалами. Действительно, поскольку , а для последовательностей , предвещающей на множестве , имеем Отсюда следует утверждение теоремы.

<< | >>
Источник: Теория случайных процессов. Лекция. 2017

Еще по теме §3 Марковские моменты.:

  1. 2.2 Случайные процессы и СДУ
  2. 2.1. Основные понятия марковских процессов
  3. 2.2. Марковские цепи
  4. 2.4. Моделирование работы подвижного состава с использованием марковских случайных процессов
  5. 3.1. Компоненты и классификация моделей массового обслуживания
  6. ФИЛОСОФИЯ И ЕЕ ОТНОШЕНИЕ И КАРДИНАЛЬНЫМ ВОПРОСАМ ЛИНГВИСТИЧЕСКОЙ НАУКИ 
  7. 4.2.ОРГАНИЗАЦИЯОБСЛУЖИВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ ЗАДАЧ
  8. Содержание дисциплины
  9. Перечень вопросов к зачету на втором курсе
  10. § 4 Марковские моменты. Локальные полумартингалы.
  11. §9 Марковские цепи.
  12. §10 Классификация марковских цепей по асимптотическим свойствам.
  13. §2 Полумартингалы.
  14. §3 Марковские моменты.
  15. § 4 Классификация потоков s-алгебр.
  16. §6 Точечные случайные процессы. Формула Ито для считающих процессов. Компенсаторы.
  17. §9 Мультивариантные точечные процессы.