<<
>>

Линейные однородные дифференциальные уравнения с произвольными коэффициентами.

Рассмотрим уравнение вида

Определение. Выражение называется линейным дифференциальным оператором.

Линейный дифференциальный оператор обладает следующими свойствами:

1)

2)

Решения линейного однородного уравнения обладают следующими свойствами:

1) Если функция у1 является решением уравнения, то функция Су1, где С – постоянное число, также является его решением.

2) Если функции у1 и у2 являются решениями уравнения, то у1 +у2 также является его решением.

Структура общего решения.

Определение. Фундаментальной системой решений линейного однородного дифференциального уравнения n –го порядка на интервале (a, b) называется всякая система n линейно независимых на этом интервале решений уравнения.

Определение. Если из функций yi составить определитель n – го порядка

,

то этот определитель называется определителем Вронского.

( Юзеф Вроньский (1776 – 1853) – польский математик и философ – мистик)

Теорема. Если функции линейно зависимы, то составленный для них определитель Вронского равен нулю.

Теорема. Если функции линейно независимы, то составленный для них определитель Вронского не равен нулю ни в одной точке рассматриваемого интервала.

Теорема. Для того, чтобы система решений линейного однородного дифференциального уравнения была фундаментальной необходимо и достаточно, чтобы составленный для них определитель Вронского был не равен нулю.

Теорема. Если – фундаментальная система решений на интервале (a, b), то общее решение линейного однородного дифференциального уравнения является линейной комбинацией этих решений.

,

где Ci –постоянные коэффициенты.

Применение приведенных выше свойств и теорем рассмотрим на примере линейных однородных дифференциальных уравнений второго порядка.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Линейные однородные дифференциальные уравнения с произвольными коэффициентами.:

  1. § 56. Дифференциальные уравнения первого порядка.Основные понятия
  2. § 57, Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
  3. § 1. УРАВНЕНИЕ РЕАКЦИИ СИСТЕМЫ
  4. Содержание дисциплины
  5. Уравнения Лагранжа и Клеро.
  6. Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
  7. Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
  8. Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
  9. Перечень вопросов к зачету на втором курсе
  10. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  11. 4.3. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ
  12. 2. Понятия и предложения из теории функций и функционального анализа
  13. з. Основные уравнения и задачи математической физики
  14. 2. Задачи на собственные значения
  15. 3. Вариационные методы
  16. 4. Проекционные методыОбширный класс методов приближенного решения уравнений вида Аи = / использует следующий ПОДХОД: решение ищется В виде UN = = где коэффициенты а, определяются из условия равенства