<<
>>

Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

Решение дифференциального уравнения вида или, короче, будем искать в виде , где k = const.

Т.к. то

При этом многочлен называется характеристическим многочленом дифференциального уравнения.

Для того, чтобы функция являлась решением исходного дифференциального уравнения, необходимо и достаточно, чтобы

т.е.

Т.к. ekx ? 0, то – это уравнение называется характеристическим уравнением.

Как и любое алгебраическое уравнение степени n, характеристическое уравнение имеет n корней. Каждому корню характеристического уравнения ki соответствует решение дифференциального уравнения.

В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно – сопряженные корни, как различные, так и кратные.

Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами.

1) Составляем характеристическое уравнение и находим его корни.

2) Находим частные решения дифференциального уравнения, причем:

a) каждому действительному корню соответствует решение ekx;

б) каждому действительному корню кратности m ставится в соответствие m решений:

в) каждой паре комплексно – сопряженных корней характеристического уравнение ставится в соответствие два решения:

и .

г) каждой паре m – кратных комплексно – сопряженных корней характеристического уравнения ставится в соответствие 2m решений:

3) Составляем линейную комбинацию найденных решений.

Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами.

Пример. Решить уравнение .

Составим характеристическое уравнение:

id="Рисунок 3227" class="lazyload" data-src="/files/uch_group46/uch_pgroup327/uch_uch1271/image/2406.gif">

Общее решение имеет вид:

Пример. Решить уравнение

Это линейное однородное дифференциальное уравнение с переменными коэффициентами второго порядка.

Для нахождения общего решения необходимо отыскать какое – либо частное решение.

Таким частным решением будет являться функция

Исходное дифференциальное уравнение можно преобразовать:

Общее решение имеет вид:

Окончательно:

Пример. Решить уравнение

Составим характеристическое уравнение:

Общее решение:

Пример. Решить уравнение

Характеристическое уравнение:

Общее решение:

Пример. Решить уравнение

Характеристическое уравнение:

Общее решение:

Пример.

Решить уравнение

Характеристическое уравнение:

Общее решение:

Пример. Решить уравнение

Характеристическое уравнение:

Общее решение:

Пример. Решить уравнение

Характеристическое уравнение:

Общее решение:

Пример. Решить уравнение

Это уравнение не является линейным, следовательно, приведенный выше метод решения к нему неприменим.

Понизим порядок уравнения с помощью подстановки

Тогда

Окончательно получаем:

Это выражение будет общим решением исходного дифференциального уравнения.

Полученное выше решение у1 = С1 получается из общего решения при С = 0.

Пример. Решить уравнение

Производим замену переменной:

id="Рисунок 3184" class="lazyload" data-src="/files/uch_group46/uch_pgroup327/uch_uch1271/image/2448.gif">

Общее решение:

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Линейные однородные дифференциальные уравнения с постоянными коэффициентами.:

  1. § 56. Дифференциальные уравнения первого порядка.Основные понятия
  2. § 57, Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
  3. § 1. УРАВНЕНИЕ РЕАКЦИИ СИСТЕМЫ
  4. Уравнения Лагранжа и Клеро.
  5. Линейные дифференциальные уравнения высших порядков.
  6. Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
  7. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
  8. Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
  9. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
  10. Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
  11. Практическое занятие №5 "Решение обыкновенных дифференциальных уравнений"
  12. Виды дифференциальных уравнений
  13. з. Основные уравнения и задачи математической физики
  14. 4. Проекционные методыОбширный класс методов приближенного решения уравнений вида Аи = / использует следующий ПОДХОД: решение ищется В виде UN = = где коэффициенты а, определяются из условия равенства
  15. Дифференциальные уравнения второго порядка
  16. 16. Линейные неоднородные дифференциальные уравнения высших порядков. Метод вариации произвольной постоянной