<<
>>

Возрастание и убывание функций.

Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ? 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Доказательство.

1) Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x10, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.

Теорема доказана.

Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢(x)£0 на этом отрезке. Если f¢(x) f(x2) при любом Dх (Dх может быть и отрицательным).

Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

Определение. Точки максимума и минимума функции называются точками экстремума.

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

Тогда при достаточно малых положительных Dх>0 верно неравенство:

, т.е.

Тогда

По определению:

Т.е.

если Dх®0, но Dх0, то f¢(x1) £ 0.

А возможно это только в том случае, если при Dх®0 f¢(x1) = 0.

Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично.

Теорема доказана.

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.

Пример: f(x) = ôxô Пример: f(x) =

y y

x

x

В точке х = 0 функция имеет минимум, но не имеет производной.

В точке х = 0 функция не имеет ни максимума, ни минимума, ни производной.

Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.

Теорема. (Достаточные условия существования экстремума)

Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “–“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “–“ на “+”– то функция имеет минимум.

Доказательство.

Пусть

По теореме Лагранжа: f(x) – f(x1) = f¢(e)(x – x1), где x < e < x1.

Тогда: 1) Если х < x1, то e < x1; f¢(e)>0; f¢(e)(x – x1) x1 f¢(e) 0, и кроме того по условию

, следовательно, .

Пусть x < x0 тогда x < c < c1 < x0 и x – x0 < 0, c – x0 < 0, т.к. по условию то

.

Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).

Теорема доказана.

Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

Очевидно, что в точке перегиба касательная пересекает кривую.

Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при

x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.

2) Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.

Теорема доказана.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Возрастание и убывание функций.:

  1. § 33. Условия возрастания и убывания функций
  2. §39. Общая схема исследования функции и построения её графика
  3. 3.4. Исследование функций с помощью производных.
  4. Возрастание и убывание функций.
  5. Схема исследования функций
  6. Параметрическое задание функции.
  7. О формулах Френе.
  8. Необходимое условие возрастания и убывания дифференцируемой функции в интервале.
  9. Достаточное условие возрастания и убывания дифференцируемой функции в интервале.
  10. 22. Теорема(достаточное условие возрастания и убывания ф-ий):
  11. Бытие как воля к превосходству
  12. 2.1 Содержание дисциплины (наименование и номера тем).
  13. 6.1. Образец решения контрольных задач типового варианта.
  14. 17.1 Возрастание, убывание функций. Экстремум.
  15. 17.4 Построение графиков функций.
  16. Монотонность функции
  17. I. Основные математические понятия и факты
  18. Производственные функции
  19. Определение области. Линии уровня функции. Направление наибольшего возрастания (убывания) функции в точке. Градиент.
  20. 6.1. Закон распределения функции одного случайного аргумента.