3.2. Дифференциал.
Если функция y = f(x) дифференцируема на некотором отрезке, то производная принимает определенные значения. Отношение Dу/Dх при Dх ® 0 можно представить в виде где a ® 0 при Dх ® 0.
Умножая равенство на Dх получим Dу = f `(x) Dx + aDx. В общем случае f `(x) ? 0 и произведение f `(x) Dх есть величина бесконечно малая одного порядка с Dх, а aDх – бесконечно малая высшего порядка. Первое из двух слагаемых (f`(x) Dх) называют главной частью приращения функции, линейной относительно Dх, или дифференциалом функции и обозначают dy = f `(x) Dх .Пусть у = х. Очевидно, что dy = dx и дифференциал независимого переменного совпадает с приращением и можно записать dy = f `(x)dx (3.24).
Производную функции f `(x) = dy / dx можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.
То, что в выражении Dу = dy + aDx второе слагаемое является бесконечно малой более высокого порядка, позволяет в приближенных вычислениях использовать следующий алгоритм:
Dу » f `(х)Dх => f (х+Dх) – f (х) @ f `( x) Dх => f (x + Dх) @ f(x) + f `(x) Dх (3.25.),
причем вычисления тем точнее, чем меньше величина Dх.
Пример: Вычислим приближенное значение sin460; 460 = 450 + 10 = p/4 + p/180; Из (3.25) очевидно, что sin(x + Dх) » sin x + Dх cosx и sin 460 = sin (p/4 + p/180) @ sin p/4 + (p/180)cos p/4 » 0,7194.
Из (3.24) следует, что большинство теорем и формул, относящихся к производной, справедливы и для дифференциалов. Так
d(u + v) = du + dv (3.26), d(uv) = vdu + udv (3.27) и т.д.
|
касательной к графику функции в точке М (х,у).
Аналогично тому, как определяются производные высших порядков, определяются и их дифференциалы. Дифференциал от дифференциала называют дифференциалом второго порядка (вторым дифференциалом) и обозначают d(dy) = dy2. По определению дифференциала d2y = [f `(x) dx]`dx = f ``(x)(dx)2, так как dx от х не зависит. Очевидно, таким же образом определяется дифференциал любого порядка dny = f(n)(x)(dx)n; принято записывая порядок дифференциала опускать скобки, т.е окончательно общее выражение примет вид
dny = f(n)(x)dxn (3.24' ).
Контрольные вопросы.
1) Что называют дифференциалом функции?
2) Где применяется или ?
3) Как находятся дифференциалы высших порядков?
Тест 17.
1) Найти дифференциал функции: у=х3-3х.
а) б) в)
2) Вычислить приближённое значение .
а) 2,101; б) 2,302; в) 4; г) 2,031.