2.1. Комплексные числа и действия над ними
Изучаемые вопросы: Определение комплексного числа (к.ч.). Геометрическая интерпретация к.ч. Алгебраическая, тригонометрическая и показательная формы к.ч. Действия с к.ч. в различных формах.
После изучения материала опорного конспекта и письменных лекций Вам следует решить одну из задач контрольной работы согласно [4]. Для проверки усвоения материала Вам предстоит ответить на вопросы для самопроверки.
Формы представления комплексных чисел (К.ч.)
Говорят, что существует взаимнооднозначное соответствие между числом и точкой вещественной оси (рис.1). Также, между точками плоскости и парами вещественных чисел существует взаимнооднозначное соответствие. Назовём такое число комплексным, где – координаты комплексного числа на плоскости. Это будет т.н. координатная форма комплексного числа.
|
Рис.1
К.ч. отвечает вектор из начала координат. Его компоненты: и , или , где – длина вектора, или его модуль, – угол между вектором и положительным направлением оси , или аргумент к.ч., (иногда его называют фазой) (рис.2).
Используют также алгебраическую форму представления К.ч., записывая его в виде , где – вещественные числа, а – символ, такой что , называемый мнимой единицей. Тогда в тригонометрической форме К.ч. может быть записано как .
Важным свойством всех этих форм записи является то, что при этом удовлетворяются основные правила алгебры.
Подробнее об этом Вы прочтёте в Учебном пособии. Здесь же мы хотели бы сделать следующее замечание. Непосредственный физический смысл имеют, конечно же, только действительные величины. Но комплексные функции, содержащие символ мнимой единицы играют важную роль в физике и технике. Этому есть, по крайней мере, три причины.
1. Многие физические величины описываются функциями и от двух переменных и , связанных уравнениями
. (1)
Такие пары встречаются, например, в двумерных задачах электростатики и гидродинамики. В этом случае и являются вещественной и мнимой частями аналитической функции комплексного переменного .
2. Решения дифференциальных уравнений физики в некоторых областях действительного переменного получаются в виде степенных рядов. А тот же степенной ряд может представлять функцию комплексного переменного, поэтому изучение комплексных переменных часто помогает получить более компактные выражения для вещественных значений аргумента.
3. Многие интегралы, заданные в вещественной форме, легче вычисляются, будучи связанными с комплексными интегралами при использовании метода контурного интегрирования, основанного на теореме Коши.
Вопросы для самопроверки по теме 2.1
1. Какие формы записи комплексного числа Вы знаете?
2. Как определяются модуль и аргумент к.ч?
3. Что такое главное значение аргумента?
4. Напишите формулы сложения, вычитания, умножения, деления и возведения в степень к.ч.