<<
>>

Дифференциальные уравнения первого порядка.

Определение. Дифференциальным уравнением первого порядка называется соотношение, связывающее функцию, ее первую производную и независимую переменную, т.е. соотношение вида:

Если такое соотношение преобразовать к виду то это дифференциальное уравнение первого порядка будет называться уравнением, разрешенным относительно производной.

Преобразуем такое выражение далее:

Функцию f(x,y) представим в виде: тогда при подстановке в полученное выше уравнение имеем:

- это так называемая дифференциальная форма уравнения первого порядка.

Далее рассмотрим подробнее типы уравнений первого порядка и методы их решения.

Уравнения вида y’ = f(x).

Пусть функция f(x) – определена и непрерывна на некотором интервале

a < x < b. В таком случае все решения данного дифференциального уравнения находятся как . Если заданы начальные условия х0 и у0, то можно определить постоянную С. Уравнения с разделяющимися переменными

Определение. Дифференциальное уравнение называется уравнением с разделяющимися переменными, если его можно записать в виде

.

Такое уравнение можно представить также в виде:

Перейдем к новым обозначениям

Получаем:

После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными.

Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.

Пример. Найти общее решение дифференциального уравнения:

Интеграл, стоящий в левой части, берется по частям (см. Интегрирование по частям.):

- это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.

id="Рисунок 3707" class="lazyload" data-src="/files/uch_group46/uch_pgroup327/uch_uch1271/image/1937.gif"> – верно

Пример. Найти решение дифференциального уравнения при условии у(2) = 1.

при у(2) = 1 получаем

Итого: или – частное решение;

Проверка: , итого

– верно.

Пример.

Решить уравнение

– общий интеграл

– общее решение

Пример. Решить уравнение

Пример. Решить уравнение при условии у(1) = 0.

Интеграл, стоящий в левой части будем брать по частям (см. Интегрирование по частям. ).

Если у(1) = 0, то

Итого, частный интеграл: .

Пример. Решить уравнение .

Для нахождения интеграла, стоящего в левой части уравнения см. Таблица основных интегралов. п.16. Получаем общий интеграл:

Пример. Решить уравнение

Преобразуем заданное уравнение:

Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

Пример. Решить уравнение .

; ;

Допустим, заданы некоторые начальные условия х0 и у0. Тогда:

Получаем частное решение

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Дифференциальные уравнения первого порядка.:

  1. § 56. Дифференциальные уравнения первого порядка.Основные понятия
  2. § 57, Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
  3. Обыкновенные дифференциальные уравнения.
  4. Дифференциальные уравнения первого порядка.
  5. Линейные однородные дифференциальные уравнения.
  6. Геометрическая интерпретация решений дифференциальных уравнений первого порядка.
  7. Дифференциальные уравнения высших порядков.
  8. Линейные дифференциальные уравнения высших порядков.
  9. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
  10. Линейные однородные дифференциальные уравнения в частных производных первого порядка.
  11. в) Сказанным определяется природа подлежащего действию уравнения и теперь необходимо показать, какой интерес преследует это действие.
  12. Практическое занятие №5 "Решение обыкновенных дифференциальных уравнений"
  13. Виды дифференциальных уравнений
  14. 6. Практическое занятие №6 " Решение дифференциальных уравнений в частных производных"
  15. з. Основные уравнения и задачи математической физики
  16. Дифференциальные уравнения
  17. Линейные дифференциальные уравнения
  18. Законы Ньютона (выполняются в ИСО)Первый закон